skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Walekar, Abhishek"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Continuous provision of quality supply air to data center’s IT pod room is a key parameter in ensuring effective data center operation without any down time. Due to number of possible operating conditions and non-linear relations between operating parameters make the working mechanism of data center difficult to optimize energy use. At present industries are using computational fluid dynamics (CFD) to simulate thermal behaviour for all types of operating conditions. The focus of this study is to predict Supply Air Temperature using Artificial Neural Network (ANN) which can overcome limitations of CFD such as high cost, need of an expertise and large computation time. For developing ANN, input parameters, number of neurons and hidden layers, activation function and the period of training data set were studied. A commercial CFD software package 6sigma room is used to develop a modular data center consisting of an IT pod room and an air-handling unit. CFD analysis is carried out for different outside air conditions. Historical weather data of 1 year was considered as an input for CFD analysis. The ANN model is “trained” using data generated from these CFD results. The predictions of ANN model and the results of CFD analysis for a set of example scenarios were compared to measure the agreement between the two. The results show that the prediction of ANN model is much faster than full computational fluid dynamics simulations with good prediction accuracy. This demonstrates that ANN is an effective way for predicting the performance of an air handling unit. 
    more » « less
  2. With an increase in the need for energy efficient data centers, a lot of research is being done to maximize the use of Air Side Economizers (ASEs), Direct Evaporative Cooling (DEC), Indirect Evaporative Cooling (IEC) and multistage Indirect/Direct Evaporative Cooling (I/DEC). The selection of cooling configurations installed in modular cooling units is based on empirical/analytical studies and domain knowledge that fail to account for the nonlinearities present in an operational data center. In addition to the ambient conditions, the attainable cold aisle temperature and humidity is also a function of the control strategy and the cooling setpoints in the data center.The primary objective of this study is to use Artificial Neural Network (ANN) modelling and Psychrometric bin analysis to assess the applicability of various cooling modes to a climatic condition. Training dataset for the ANN model is logged from the monitoring sensor array of a modular data center laboratory with an I/DEC module. The data-driven ANN model is utilized for predicting the cold aisle humidity and temperatures for different modes of cooling. Based on the predicted cold aisle temperature and humidity, cold aisle envelopes are represented on a psychrometric chart to evaluate the applicability of each cooling mode to the territorial climatic condition. Subsequently, outside air conditions favorable to each cooling mode in achieving cold aisle conditions, within the ASHRAE recommended environmental envelope, is also visualized on a psychrometric chart. Control strategies and opportunities to optimize the cooling system are discussed. 
    more » « less